Improving the Protocols for CO₂ Leakage Monitoring with Attribution

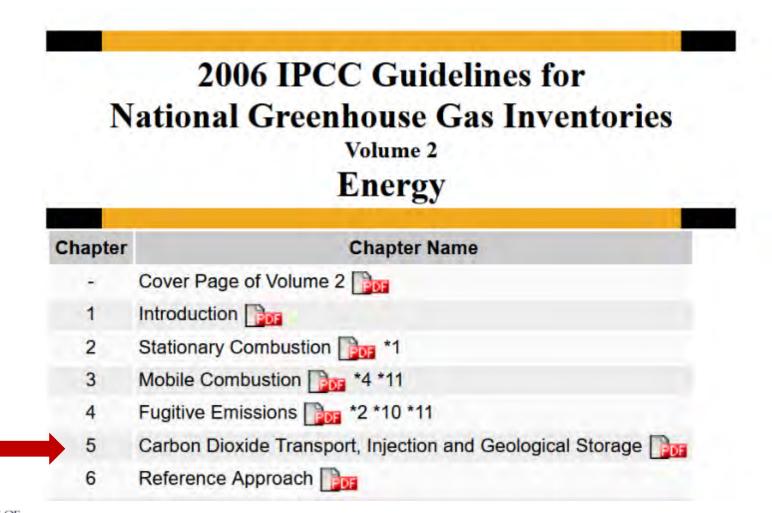
Dr. Katherine Romanak

Bureau of Economic Geology The University of Texas at Austin

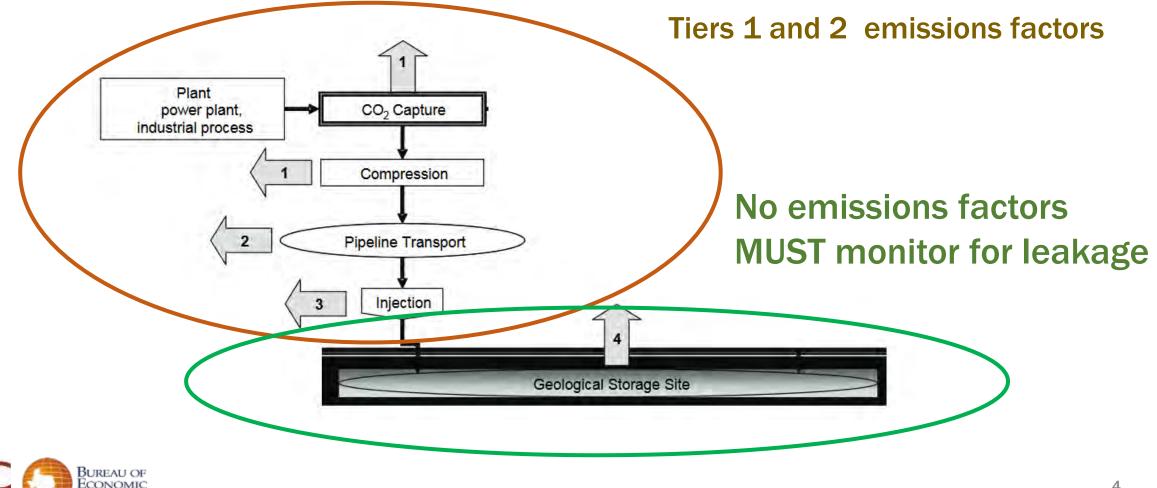
Tim Dixon, IEAGHG

IPCC Task Force on Inventories Expert Meeting on Carbon Dioxide Removal Technologies and Carbon Dioxide Capture, Use and Storage

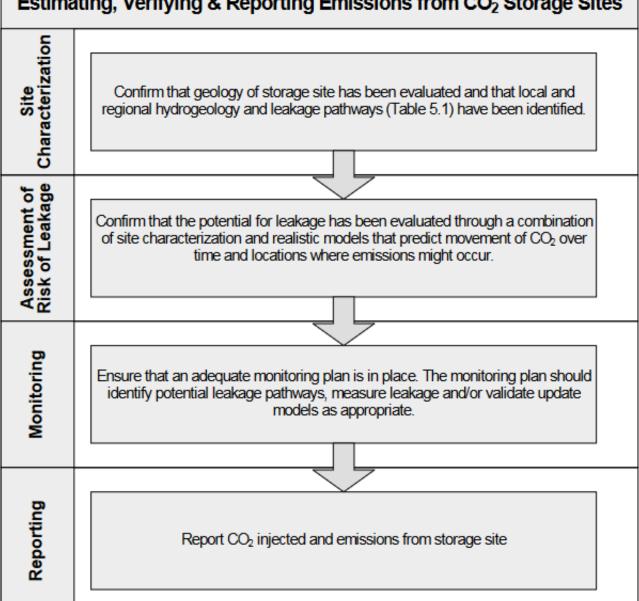
Vienna, Austria


1-3 July 2024

Where We are Now?


- Since 2006 IPCC Guidelines we have two decades of operational CCS experience with Monitoring Measurement and Verification
- Currently 41 Projects storing ~ 41 MMTPA
- No environmental impacts or reversal of storage
- A new understanding of how to implement environmental monitoring

First Accounting Protocol for CCS


Accounting for Full-Chain Emissions

JEOLOGY

The Seed that **Grew CO**₂ **Storage Regulations**

Estimating, Verifying & Reporting Emissions from CO₂ Storage Sites

Safe and Secure CO₂ Storage Regulations

Regulatory				EU		US EPA		
Body Monitoring Objectives:	IPCC GHG Guidelines	London Convention and Protocol	OSPAR	CCS Directive	ETS Directive	UIC Class VI well regulation	GHG reporting Subpart RR	UNFCCC Clean Development Mechanism
Overall Objectives	GHG accounting	Protection of the marine environment	Protection of the marine environment	Protection of the environment	GHG accounting	Protection of the environment (underground sources of drinking water)	GHG accounting	GHG accounting and protection of the environment

Dixon and Romanak, 2015, International Journal of Greenhouse Gas Control

ISO TC-265 – standards on Capture Performance, Pipeline Transport, Geological Storage, Storage in EOR, Vocabulary

Slight differences but the general workflow is similar among regulations

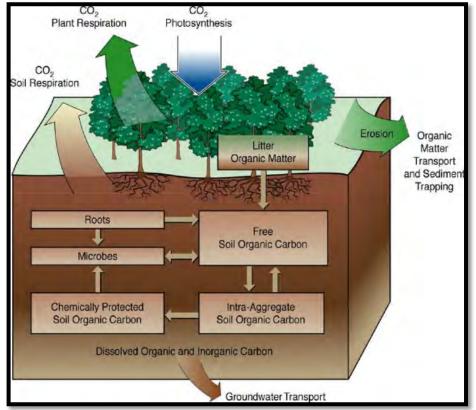
In summary - Protocols for Leakage Monitoring:

> Monitoring to assess CO₂ storage performance in the reservoir

Monitoring to acquire baseline measurements

Monitoring to detect leakage at the surface

and, if leakage is detected or suspected, then


Monitoring to quantify for leakage amounts and

Monitoring to assess impacts of leakage

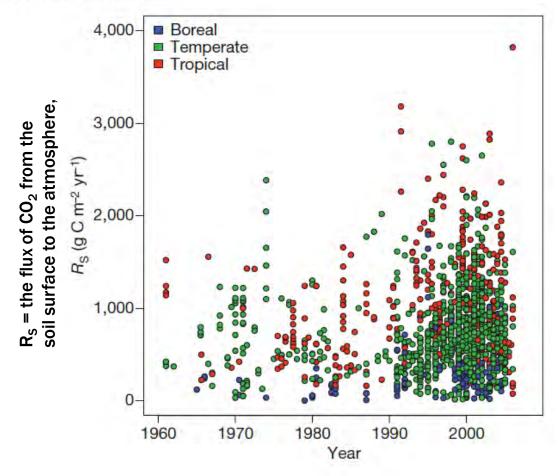
CO₂ Variability

- CO₂ is naturally everywhere
- Dominant source is biological respiration
- Dynamic over space and time (temperature, rainfall, pressure...)
- CO_2 is reactive
- Very difficult to discern leakage from natural variability.
- Difficult to determine what is anomalous

Source: DOE, 1999: Carbon Sequestration Research and Development

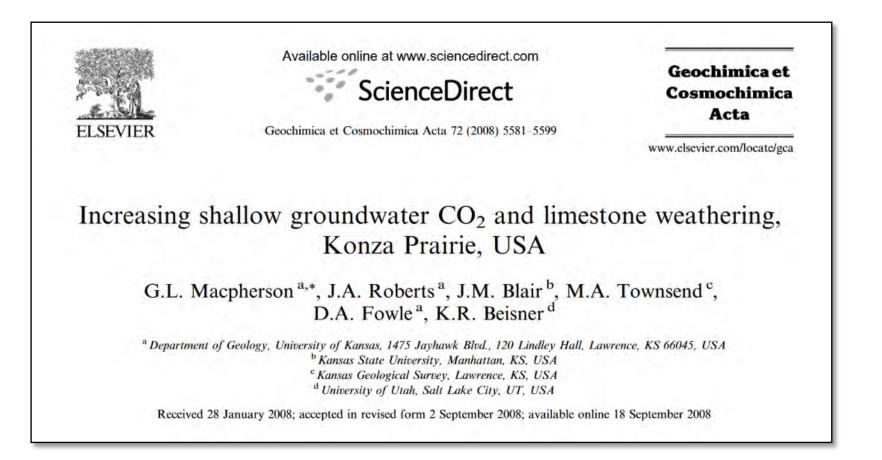
Determining Anomalies Using Baselines

- Measure "baseline" CO₂ for 1 year before project starts to document seasonal variability.
- Monitor CO₂ during project and compare to baseline.
- Significant increase from baseline during a project signals a k anomalous CO₂

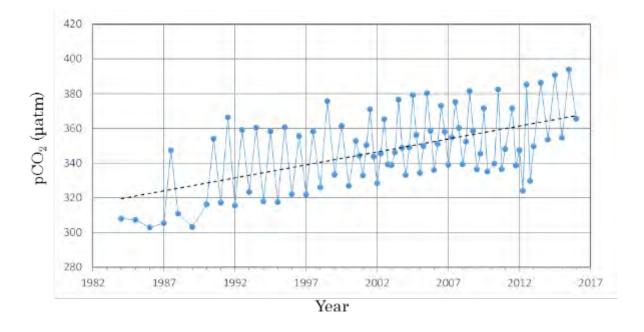

http://www.sustaenable.eu/?page_id=932

- Did the storage project cause the anomaly?
- "Attribution" is a missing step

Temperature-associated increases in the global soil respiration record


Ben Bond-Lamberty¹ & Allison Thomson¹

But.... "Baselines" in Soils are Shifting Upwards

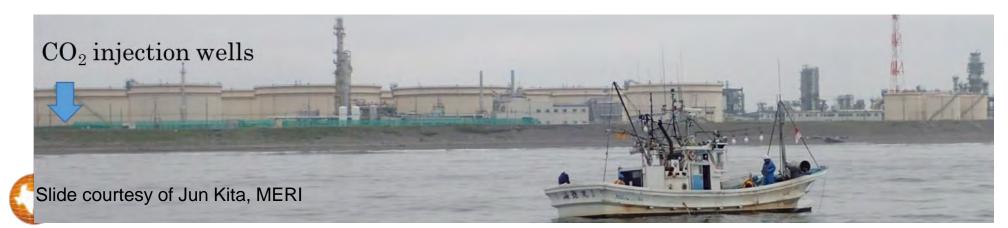

"Baselines" in Groundwater are Shifting Upwards

Katherine Romanak

"Baselines" in Seawater are Shifting Upwards

Time series of surface seawater CO_2 level near Japan. Source data by Japan Meteorological Agency, Courtesy of Jun Kita, RITE

Katherine Romanak



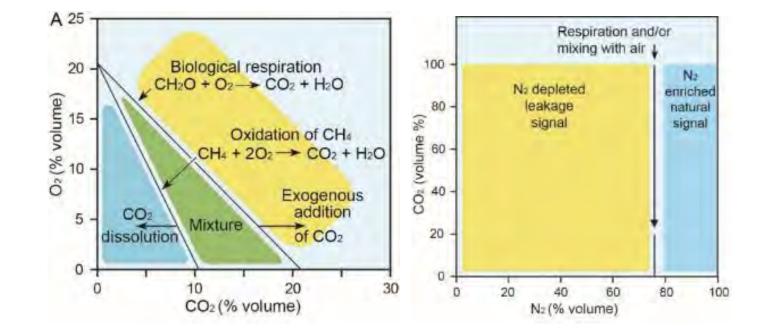
- Naturally produced CO₂ in the biosphere is increasing due to climate change
- Use of "concentration-based" or "baseline" methods will result in false positives for leakage
- The risk of false positives is greater than the risk of actual leakage
- False positives put projects at unnecessary risk

Tomakomai Project

- Tomakomai Offshore demonstration project Hokkaido Japan
- Derived leakage thresholds from 1 year of baseline data
- Injection began April 2016 with routine environmental monitoring plan
- May, 2016, operations were halted after 7,163 ton CO₂ was injected
- High CO₂ levels observed in the routine monitoring
- February 2017 operations resumed

Shifting baselines cause false positives and project shutdowns

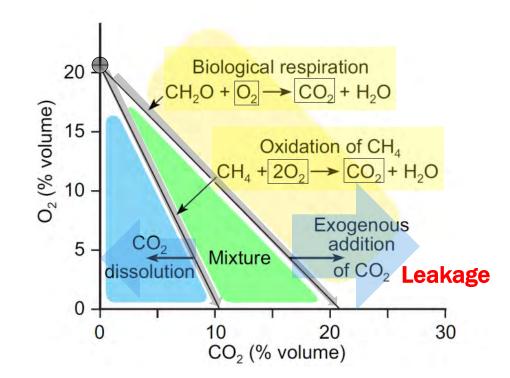
Learning #2


- If we actively look for "leakage" (e.g. via routine monitoring) we will find an abundance of natural anomalies
- We will need to attribute the source of these anomalies.
- Baseline methods are not effective or accurate.
- So how do we adequately assure environmental safety?

Process-Based Attribution Approach in Soil Gas

- Uses simple gas relationships to identify processes.
 - Biologic respiration
 - Methane oxidation
 - Dissolution
 - Leakage
- No need for years of background

Bureau of Economic Geology


- One time characterization
- Method can be applied in any environment regardless of variability

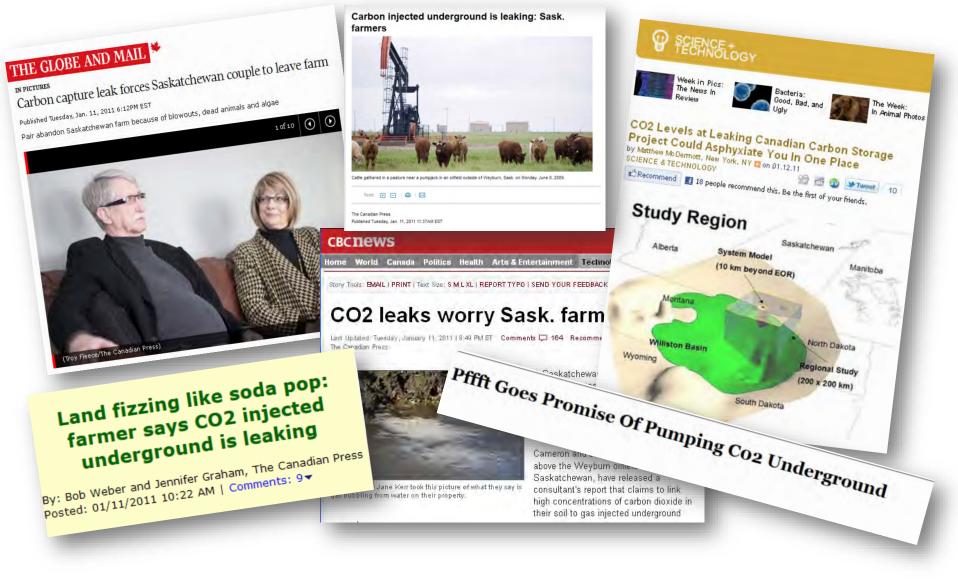
Romanak et al., 2014, International Journal of Greenhouse Gas Control, 30, 42-57 Romanak et al., 2012, Geophysical Research Letters, 39 (15).

Process-Based Attribution Example

 Uses geochemical relationships to identify key processes rather than concentration comparisons

Application to a Leakage Allegation

- IEAGHG Weyburn CO₂ Monitoring and Storage project, Saskatchewan Canada
- Farmers perceived environmental change and blamed on the CO₂ storage project
- Attribution protocols for responding to stakeholder concerns were not in place
- Unexperienced consultant wrongly attributed the anomaly to leakage.


THE GLOBE AND MAIL

Renchauss Carbon capture leak forces Saskatchewan couple to leave farm Published Tuesdan, Jan. 11, 2011 6:12998 EST Par abandon Saskatchewan farm because of blowouts, dead arimals and algae

Wrong Attribution-Negative Media Storm

Process-Based Attribution Data from the Kerr Farm

Leakage Allegation Discounted

"the Kerrs, accepted the IPAC-CO2 study's findings while emphasizing its necessity, saying that "without a full scale investigation, it has been impossible until now to rule out CO₂ contamination."

- Environmental change resulting from climate change will cause stakeholders to question the storage project
- When CCS is fully deployed, responding to stakeholders concerns may be our main activity.
- Need fast accurate stakeholderfriendly methods with clear thresholds
- Methods that are easily communicated to stakeholders are needed

Attribution Methods

Method	Scientific Basis	PROS	CONS
Noble gas tracers (He, Rn)	 Fingerprinting technique Assume conservative behavior Low concentrations in the biosphere Inherent to the CO₂ stream or reservoir Can be added at cost 	 Rigorously tested and proven in aqueous systems Clear thresholds 	 Not proven in soil gas Conservative tracers may not directly represent reactive CO₂ concentrations No continuous monitoring capability Mostly proven for in-reservoir applications
Process-based soil gas ratios (CO ₂ , N ₂ , CH ₄ , O ₂)	 Soil gas ratios indicate the processes that create the gases 	 Easily measured Instant simple graphical result Universal threshold Inherently includes seasonal and diurnal CO₂ fluctuations Demonstrated at many project sites 	 Used as a screening tool- if threshold is exceeded, additional attribution using carbon isotopes is required. Continuous measurement technology is in development
Carbon Isotopes δ ¹³ C versus ¹⁴ C	 Fingerprinting technique Values are well-known in various media Changes can easily predicted Well documented and highly studied 	 Easily measured Continuous measurement currently available for δ¹³C Highly determinative when used together 	 Significant overlap in δ¹³C with majority of CO₂ sources ¹⁴C expensive analysis with no continuous measurement capability Must be used together in most applications

Dixon and Romanak, 2015 recommended methods that: **Rely on a one-time** "characterization" rather than "baseline" methods

Revised Protocols for Leakage Monitoring

>Monitoring to acquire background measurements

> Monitoring to assess CO₂ storage performance in the reservoir

Monitoring to detect leakage

and, if leakage detected or suspected, then

> Monitoring for CO₂ attribution

and only if CO_2 attributed to injected CO_2 , then

Monitoring to quantify leakage amounts and

>Monitoring to assess impacts of leakage

Most of the time will not be needed at all

Gap in the Global Regulations

Regulatory Body Monitoring Objectives:	IPCC GHG Guidelines	London Convention and Protocol	OSPAR	EU		US EPA		
				CCS Directive	ETS Directive	UIC Class VI well regulation	GHG reporting Subpart RR	UNFCCC Clean Development Mechanism
Overall Objectives	GHG accounting	Protection of the marine environment	Protection of the marine environment	Protection of the environment	GHG accounting	Protection of the environment (underground sources of drinking water)	GHG accounting	GHG accounting and protection of the environment
Storage Performance	~	Only in terms of retention	Only in terms of retention	~		Only in terms of pressure and plume extent		~
Detection of Leaks or Anomalies	~	~	~	~		~	~	~
Baseline/ Background Measurements	~			~		~	~	~
Attribution of Leaks and/or Anomalies	Mentions in the context of baseline isotopic ratios. Not included as a step						Mentions in the context of baseline CO ₂ concentrati ons. Not included as a step	Not included as a step but accommodates a range of monitoring techniques
Environmental Impacts		1	~	~		~		~
Quantification of GHG	~				~		~	~

Dixon and Romanak, 2015, Improving monitoring protocols for CO₂ geological storage with technical advances in CO₂ attribution monitoring International Journal of Greenhouse Gas Control, 41, 29-40.

Recommend attribution be added as a step to the regulations.

Conclusion and Implications

- Due to growing confidence in new monitoring techniques, we propose additional stage in monitoring protocols which will...
 - Increase monitoring efficiency
 - Respond to stakeholder concerns
 - Avoid false positives for leakage
 - >Avoid unnecessary leakage quantification and impacts monitoring
 - >Avoid significant unnecessary monitoring costs

Propose to be explicitly included for new protocols or when existing protocols are updated

2023 Updates Adding Attribution to the EU CCS Directive

Draft Zero for revised Guidance Document 2:

Characterisation of the Storage Complex, CO2 Stream Composition, Monitoring and Corrective Measures

Box 4: Attribution monitoring

Attribution monitoring aims to differentiate naturally occurring CO₂ from CO₂ that has originated from storage operations. Natural processes, such as decay of organic matter, dolomitisation, volcanic activity/ migration of magmatic CO₂ through dikes and sills, and wildfires, can generate CO₂. This is a key consideration in baseline monitoring, so that natural CO₂ can be distinguished from leaked CO₂. Geochemical monitoring methods can sometimes be used to attribute CO₂ to its source.

- Environmental monitoring for leakage out of the storage complex towards, at or near the surface, on land or offshore:
 - Detection of suspected leakage anomaly;
 - Attribution of leakage anomaly;
 - Quantification of leakage;
 - Accounting and quantification of emissions from the storage complex for surrender of emissions trading allowances for any leaked emissions under EU ETS Directive 2003/87/EC (see Section 4.2); Not all emissions are relevant to the EU ETS Directive.
 - Safety and Environmental impacts.

Katherine Romanak Bureau of Economic Geology The University of Texas at Austin

katherine.romanak@beg.utexas.edu

http://www.beg.utexas.edu/gccc/

